Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
Pol J Vet Sci ; 27(1): 85-94, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38511625

RESUMO

Anaplasmosis and ehrlichiosis are important tick-borne rickettsial diseases of medical and veterinary importance that cause economic losses in livestock. In this study, the prevalence of Anaplasma ovis, Ehrlichia canis and Ehrlichia chaffeensis was investigated in ticks collected from sheep in various farms in Van province, which is located in the Eastern Anatolian Region of Turkey. The ticks used in this study were collected by random sampling in 26 family farm business in 13 districts of Van province. A total of 688 ticks were collected from 88 sheep and 88 tick pools were created. All ticks identified morphologically as Rhipicephalus bursa. Phylogenetic analysis of Chaperonin and 16S rRNA gene sequences confirmed A. ovis, E. canis and E. chaffeensis in this study. Of the 88 tick pools tested, 28.41% (25/88) were positive for at least one pathogen. Anaplasma DNA was detected in five of the 88 pools (5.68%), E. canis DNA was detected in 19 of the 88 pools (21.59%), and E. chaffeensis DNA was detected in one of the 88 pools (1.14%) of R. bursa ticks. To our knowledge, this is the first report describing the presence of A. ovis, E. canis, and E. chaffeensis in R. bursa ticks collected from sheep in Turkey. Further studies are needed to investigate other co-infections in sheep in Turkey.


Assuntos
Anaplasma ovis , Ehrlichia chaffeensis , Rhipicephalus , Animais , Ovinos/genética , Rhipicephalus/genética , Ehrlichia chaffeensis/genética , Ehrlichia canis/genética , Anaplasma ovis/genética , Turquia/epidemiologia , RNA Ribossômico 16S/genética , Filogenia , DNA
2.
Parasitol Res ; 123(3): 168, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517567

RESUMO

Cattle ticks (Rhipicephalus microplus) are important economic ectoparasites causing direct and indirect damage to cattle and leading to severe economic losses in cattle husbandry. It is common knowledge that R. microplus is a species complex including five clades; however, the relationships within the R. microplus complex remain unresolved. In the present study, we assembled the complete mitochondrial genome of clade C by next-generation sequencing and proved its correctness based on long PCR amplification. It was 15,004 bp in length and consisted of 13 protein genes, 22 transfer genes, and two ribosomal genes located in the two strains. There were two copies of the repeat region (pseudo-nad1 and tRNA-Glu). Data revealed that cox1, cox2, and cox3 genes were conserved within R. microplus with small genetic differences. Ka/Ks ratios suggested that 12 protein genes (excluding nad6) may be neutral selection. The genetic and phylogenetic analyses indicated that clade C was greatly close to clade B. Findings in the current study provided more data for the identification and differentiation of the R. microplus complex and made up for the lack of information about R. microplus clade C.


Assuntos
Doenças dos Bovinos , Genoma Mitocondrial , Rhipicephalus , Infestações por Carrapato , Animais , Bovinos , Rhipicephalus/genética , Filogenia , Infestações por Carrapato/veterinária , Infestações por Carrapato/parasitologia , Doenças dos Bovinos/parasitologia
3.
Acta Trop ; 253: 107158, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402921

RESUMO

Tick-borne viruses (TBV) have gained public health relevance in recent years due to the recognition of human-associated fatal cases and the increase in tick-borne disease and transmission. However, many tick species have not been studied for their potential to transmit pathogenic viruses, especially those found in Latin America. To gain better understanding of the tick virome, we conducted targeted amplification using broadly-reactive consensus-degenerate pan-viral targeting viruses from the genera Flavivirus, Bandavirus, Uukuvirus, and Orthonairovirus genus. Additionally, we conducted unbiased metagenomic analyses to investigate the presence of viral RNA sequences in Amblyomma cajennense, A. patinoi and Rhipicephalus microplus ticks collected from a horse slaughter plant in Medellín, Colombia. While no viral products were detected by PCR, results of the metagenomic analyses revealed the presence of viral genomes belonging to the genera Phlebovirus, Bandavirus, and Uukuvirus, including Lihan Tick Virus (LTV), which was previously reported in Rhipicephalus microplus from Colombia. Overall, the results emphasized the enormous utility of the next-generation sequencing in identifying virus genetic diversity presents in ticks and other species of vectors and reservoirs.


Assuntos
Vírus de RNA , Rhipicephalus , Animais , Humanos , Cavalos , Rhipicephalus/genética , Amblyomma , Colômbia , Viroma/genética
4.
Sci Rep ; 14(1): 4419, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38388834

RESUMO

The skin is the primary feeding site of ticks that infest livestock animals such as cattle. The highly specialised functions of skin at the molecular level may be a factor contributing to variation in susceptibility to tick infestation; but these remain to be well defined. The aim of this study was to investigate the bovine skin transcriptomic profiles of tick-naïve and tick-infested cattle and to uncover the gene expression networks that influence contrasting phenotypes of host resistance to ticks. RNA-Seq data was obtained from skin of Brangus cattle with high (n = 5) and low (n = 6) host resistance at 0 and 12 weeks following artificial tick challenge with Rhipicephalus australis larvae. No differentially expressed genes were detected pre-infestation between high and low resistance groups, but at 12-weeks there were 229 differentially expressed genes (DEGs; FDR < 0.05), of which 212 were the target of at least 1866 transcription factors (TFs) expressed in skin. Regulatory impact factor (RIF) analysis identified 158 significant TFs (P < 0.05) of which GRHL3, and DTX1 were also DEGs in the experiment. Gene term enrichment showed the significant TFs and DEGs were enriched in processes related to immune response and biological pathways related to host response to infectious diseases. Interferon Type 1-stimulated genes, including MX2, ISG15, MX1, OAS2 were upregulated in low host resistance steers after repeated tick challenge, suggesting dysregulated wound healing and chronic inflammatory skin processes contributing to host susceptibility to ticks. The present study provides an assessment of the bovine skin transcriptome before and after repeated tick challenge and shows that the up-regulation of pro-inflammatory genes is a prominent feature in the skin of tick-susceptible animals. In addition, the identification of transcription factors with high regulatory impact provides insights into the potentially meaningful gene-gene interactions involved in the variation of phenotypes of bovine host resistance to ticks.


Assuntos
Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Animais , Bovinos , Rhipicephalus/genética , Suscetibilidade a Doenças , Infestações por Carrapato/genética , Infestações por Carrapato/veterinária , Transcriptoma , Inflamação/genética , Fatores de Transcrição/genética , Doenças dos Bovinos/genética
5.
Parasite ; 31: 3, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315066

RESUMO

In this study, we aimed to develop a comprehensive methodology for identifying amino acid polymorphisms in acetylcholinesterase transcript 2 (AChE2) in acaricide-resistant Rhipicephalus microplus ticks. This included assessing AChE2 expression levels through qPCR and conducting 3D modeling to evaluate the interaction between acaricides and AChE2 using docking techniques. The study produced significant results, demonstrating that acaricide-resistant R. microplus ticks exhibit significantly higher levels of AChE expression than susceptible reference ticks. In terms of amino acid sequence, we identified 9 radical amino acid substitutions in AChE2 from acaricide-resistant ticks, when compared to the gene sequence of the susceptible reference strain. To further understand the implications of these substitutions, we utilized 3D acaricide-AChE2 docking modeling to examine the interaction between the acaricide and the AChE2 catalytic site. Our models suggest that these amino acid polymorphisms alter the configuration of the binding pocket, thereby contributing to differences in acaricide interactions and ultimately providing insights into the acaricide-resistance phenomenon in R. microplus.


Title: Relations entre la résistance aux acaricides et les polymorphismes du gène de l'acétylcholinestérase chez la tique du bétail Rhipicephalus microplus. Abstract: Notre étude vise à développer une méthodologie complète pour identifier les polymorphismes d'acides aminés dans le transcrit 2 de l'acétylcholinestérase (AChE2) chez les tiques Rhipicephalus microplus résistantes aux acaricides. Cela comprend l'évaluation des niveaux d'expression d'AChE2 via qPCR et la réalisation d'une modélisation 3D pour évaluer l'interaction entre les acaricides et l'AChE2 à l'aide de techniques d'amarrage moléculaire. L'étude a produit des résultats significatifs, démontrant que les tiques R. microplus résistantes aux acaricides présentent des niveaux d'expression d'AChE significativement plus élevés que les tiques sensibles de référence. En termes de séquence d'acides aminés, nous avons identifié 9 substitutions d'acides aminés dans AChE2 provenant de tiques résistantes aux acaricides par rapport à la séquence génétique de la souche sensible de référence. Pour mieux comprendre les implications de ces substitutions, nous avons utilisé la modélisation de l'amarrage acaricide-AChE2 pour examiner l'interaction entre l'acaricide et le site catalytique AChE2. Nos modèles suggèrent que ces polymorphismes d'acides aminés modifient la configuration de la poche de liaison, contribuant ainsi aux différences dans les interactions acaricides et fournissant finalement un aperçu du phénomène de résistance aux acaricides chez R. microplus.


Assuntos
Acaricidas , Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Animais , Bovinos , Acaricidas/farmacologia , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Rhipicephalus/genética , Rhipicephalus/metabolismo , Resistência a Medicamentos/genética , Polimorfismo Genético , Aminoácidos/genética , Infestações por Carrapato/veterinária
6.
Acta Trop ; 252: 107138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307363

RESUMO

Ticks are small and adaptable arachnid ectoparasites and global carriers of various pathogens that threaten both human and animal health. They are present in many parts of China. A total of 858 ticks were collected from various regions and hosts, then subjected to species identification based on morphological and molecular characteristics, as described in the authors' previous study. Eighty-three individual tick samples were selected for screening pathogens based on metagenomic next-generation sequencing (mNGS) and polymerase chain reaction (PCR) assays. The genomic DNA of tick species was extracted, and amplification of the bacterial 16S rRNA gene was carried out from DNA of individual ticks using V3-V4 hypervariable regions, before subjecting to metagenomic analysis. Each tick underwent specific PCR tests for identifying the bacterial species present, including Anaplasma, Ehrlichia, Coxiella, and Rickettsia, and also protozoans such as Babesia, Theileria, and Hepatozoon. Illumina NovaSeq sequencing results revealed that the dominant phylum and family in Rhipicephalus spp. were Bacteroidota and Muribaculaceae, respectively. Alpha diversity patterns varied depending on tick sex (R. linnaei only), species and location, but not on host. Furthermore, bacterial pathogens, including A. marginale (58 %, 29/50), A. platys (6 %, 3/50), E. minasensis (2 %, 1/50), Ehrlichia sp. (10 %, 5/50), T. sinensis (24 %, 12/50), T. orientalis (54 %, 27/50) and Coxiella-like bacteria (CLB) (80 %, 40/50) were detected in R. microplus, while E. canis (33.33 %, 10/30), H. canis (20 %, 6/30) and CLB (100 %, 30/30) were detected in R. linnaei. Also, Anaplasma sp. (33.33 %, 1/3), A. marginale (33.33 %, 1/3), R. felis (33.33 %, 1/3) and CLB (100 %, 3/3) were detected in R. haemaphysaloides. Dual and triple co-infections involving pathogens or CLB were detected in 84.00 % of R. microplus, 66.66 % of R. haemaphysaloides, and 33.00 % of R. linnaei. The report on microbial communities and pathogens, which found from Rhipicephalus spp. in Hainan Island, is an important step towards a better understanding of tick-borne disease transmission. This is the first report in the area on the presence of Anaplasma sp., A. marginale, R. felis and Coxiella, in R. haemaphysaloides.


Assuntos
Ixodidae , Rhipicephalus , Rickettsia , Doenças Transmitidas por Carrapatos , Animais , Bovinos , Cães , Humanos , Ixodidae/genética , Ixodidae/microbiologia , Rhipicephalus/genética , RNA Ribossômico 16S/genética , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia , Ehrlichia/genética , Rickettsia/genética , Anaplasma/genética , DNA , Sequenciamento de Nucleotídeos em Larga Escala
7.
Acta Trop ; 252: 107135, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316242

RESUMO

Studies of morphological and genetic variation in vector populations across environmental gradients can help researchers to estimate species' responses to climate change scenarios and the potential risk of disease-causing pathogen expansion, which impacts negatively on human health. In this study, we analysed the effect of altitudinal gradients on the phenotypic response of the hard tick of medical and veterinary importance, Rhipicephalus sanguineus sensu lato (s.l.). Specimens of R. sanguineus s.l. were collected from host animals in one of Mexico's regions with high climatic heterogeneity (Veracruz), and geometric morphometric theory was employed to assess the response of three morphological characters to the altitudinal gradient. Additionally, genetic similarity data were provided, and ecological niche models were used to project the climatic distribution in the region. Our results demonstrate that the shape and size of ticks respond to altitude. Molecular identification indicate that all analysed samples correspond to the tropical lineage recently named Rhipicephalus linnaei. According to ecological niche models, the mean annual temperature contributes significantly to the spatial distribution of this tick species, with areas of higher suitability in the mountainous region. These changes in morphological structure and the presence of ticks at higher altitudinal gradients suggest that R. linnaei has a high potential for adaptation. Due to the variability of ecosystems in the state of Veracruz, our results could be valuable in assessing the response of this tick in a changing environment, aiding in predicting future scenarios in the distribution and abundance of this species.


Assuntos
Doenças do Cão , Rhipicephalus sanguineus , Rhipicephalus , Animais , Humanos , Cães , Rhipicephalus/genética , México , Ecossistema , Rhipicephalus sanguineus/genética , Altitude , Filogenia
8.
Exp Appl Acarol ; 92(2): 253-261, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38351235

RESUMO

Ticks are competent vectors of a wide range of pathogens. They are of veterinary and public health importance as they affect both animal and human health. Transhumance and the transboundary movements of cattle within the West African Sub-region have facilitated the spread of ticks which threatens the introduction of invasive species. Currently, Rhipicephalus microplus have been identified in the Upper East Region of Ghana which could mean a wider distribution of the species across the country due to livestock trade. This study focused on three sites in the Greater Accra Region, which serves as the gateway to receiving most of the cattle transported from the northern regions of Ghana. Ticks were sampled from August 2022 in the wet season to January 2023 in the dry season. Three tick genera were identified: Amblyomma (19.5%), Hyalomma (1.1%), and Rhipicephalus (79.3%) from the 1,489 feeding ticks collected from cattle. Furthermore, Rhipicephalus microplus, Hyalomma rufipes and Amblyomma variegatum were identified molecularly using primers that target the mitochondrial COI gene. There was a significant association between the tick species and seasons (p < 0.001). Finding R. microplus in this study indicates the extent of the spread of this invasive tick species in Ghana and highlights the need for efficient surveillance systems and control measures within the country.


Assuntos
Doenças dos Bovinos , Ixodidae , Rhipicephalus , Infestações por Carrapato , Humanos , Bovinos , Animais , Rhipicephalus/genética , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , Gana , Doenças dos Bovinos/epidemiologia , Ixodidae/genética , Espécies Introduzidas
9.
Int J Parasitol Drugs Drug Resist ; 24: 100519, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38168594

RESUMO

Rhipicephalus (Boophilus) microplus is one of the most successful ticks infesting cattle around the world. This highly-invasive species transmits cattle parasites that cause cattle fever leading to a high socio-economic burden. Tick eradication programs have often failed, due to the development of acaricide resistance. Here we characterize acaricide resistance in a large number of tick isolates from regions in South Africa (KwaZulu Natal, Mpumalanga, Western & Eastern Cape provinces) and two Brazilian regions. By means of Larval Packet Tests (LPT's) acaricide resistance was evaluated against five commonly used acaricides (chlorfenvinphos, fipronil, deltamethrin, amitraz, and ivermectin). Furthermore, the coding region containing the knock down resistance (kdr) mutation, known to result in pyrethroid resistance, was sequenced. Resistance to at least one acaricide class was reported in each of the five regions, and a high proportion of tick isolates exhibited multi-resistance to at least two acaricide classes (range: 22.2-80.0%). Furthermore, resistance ratios (RR) showed high spatial variation (intercontinental, as well as regional) but low regional spatial autocorrelation. Previous and current acaricide use correlated with current RR, and several combinations of acaricide RR were positively correlated. Moreover, fipronil resistance tended to be higher in farms with more intense acaricide use. The kdr-mutations provided the ticks a fitness advantage under the selection pressure of synthetic pyrethroids based on population (kdr-allele frequency) and individual level data (genotypes). The data show the threat of acaricide (multi-)resistance is high in Brazil and South Africa, but acaricide specific levels need to be assessed locally. For this purpose, gathering complementary molecular information on mutations that underlie resistance can reduce costs and expedite necessary actions. In an era of human-caused habitat alterations, implementing molecular data-driven programs becomes essential in overcoming tick-induced socio-economic losses.


Assuntos
Acaricidas , Piretrinas , Rhipicephalus , Animais , Bovinos , Humanos , Acaricidas/farmacologia , Rhipicephalus/genética , Brasil/epidemiologia , África do Sul/epidemiologia , Piretrinas/farmacologia , Genótipo
10.
Vet Parasitol ; 327: 110136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38290194

RESUMO

Tick saliva has a pivotal function in parasitism. It has pharmacological and immunomodulatory properties, with several proteins reported in its composition. Thyroglobulin type-1 domain protease inhibitor (thyropin)-like proteins are found in tick saliva, but their function, properties and structures are poorly characterized. It has been reported that thyropins are capable of inhibiting cysteine peptidases present in antigen-presenting cells. To elucidate the role of thyropin-like proteins in ticks, we conducted in silico analysis and cloned an open reading frame from a thyropin-like protein found in Rhipicephalus microplus. The recombinant protein was successfully expressed, followed by immunological characterization and a vaccine trial against Rhipicephalus sanguineus in rabbits. Several differences are observed between thyropin-like proteins from hard and soft ticks, especially the number of thyroglobulin domains and predicted glycosylation pattern. Thyropin-like proteins also differ between postriata and metastriata ticks, the latter having a coil-domain at the C-terminal region and high number of predicted glycosylation sites. Overall, the data suggested divergence in thyropin-like proteins functions among ticks. The recombinant thyropin-like protein is immunogenic and the antibodies against it are able to recognize the native protein in tick saliva and tissues. While the recombinant protein does not elicit a protective response against R. sanguineus infestation, its characterization paves the way for further investigations aimed at determining the precise function of this protein in tick physiology.


Assuntos
Rhipicephalus sanguineus , Rhipicephalus , Infestações por Carrapato , Animais , Coelhos , Proteínas Recombinantes , Rhipicephalus/genética , Saliva/metabolismo , Tireoglobulina , Infestações por Carrapato/prevenção & controle , Infestações por Carrapato/veterinária , Ensaios Clínicos Veterinários como Assunto
11.
Ticks Tick Borne Dis ; 15(2): 102304, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38159432

RESUMO

Rhipicephalus microplus, a highly host-specific tick that primarily feeds on cattle, posing a significant threat to livestock production. The investigation of tick physiology is crucial for identifying potential targets in tick control. Of particular interest adult female ticks undergo a significant expansion of the midgut during feeding, leading to an over 100-fold increase in body weight. Beyond the functions of storing and digesting blood meals, the tick midgut plays a crucial role in acquiring and transmitting pathogens. However, our understanding of tick midgut physiology remains limited. In this study we conducted a comprehensive longitudinal transcriptome analysis of the midgut from adult female R. microplus ticks collected at various feeding stages, providing an overview of the transcriptional modulation in this organ as feeding progress. By employing a de novo assembly approach followed by coding-sequences (CDS) extraction, 60,599 potential CDS were identified. In preparation for functional annotation and differential expression analysis, transcripts that showed an average transcript per million (TPM) ≥ 3 in at least one of the biological conditions were extracted. This selection process resulted in a total of 10,994 CDS, which were categorized into 24 functional classes. Notably, our differential expression analysis revealed three main transcriptional profiles. In the first one, representing the slow-feeding stage, the most abundant functional classes were the "protein synthesis" and "secreted" groups, reflecting the highly active state of the tick midgut. The second profile partially accounts for the rapid-feeding stage, in which a high number of differentially expressed transcripts was observed. Lastly, the third transcriptional profile represents post-detached ticks. Notably the highest number of modulated transcripts was observed up to 48 h post-detachment (hpd), however no major differences was observed up to 168 hpd. Overall, the data presented here offers a temporal insight into tick midgut physiology, contributing to the identification of potential targets for the development of anti-tick control strategies.


Assuntos
Rhipicephalus , Feminino , Animais , Bovinos , Rhipicephalus/genética , Perfilação da Expressão Gênica , Sistema Digestório/metabolismo
12.
Parasitol Res ; 123(1): 44, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095712

RESUMO

Ticks are important vectors involved in the transmission of pathogens of zoonotic and veterinary importance. In this study, ticks were collected from cattle in Navrongo, Kintampo, and Kumasi and screened for pathogen DNA using PCR and Sanger sequencing. A total of 454 ticks were collected, morphologically identified and confirmed using primers that target the 660-bp segment of the mitochondrial COI gene. The predominant tick species was Amblyomma variegatum (70.26%). DNA was extracted from 85 tick pools and screened for the presence of Rickettsia DNA based on the 639 bp of the outer membrane protein A (ompA) gene, Ehrlichia/Anaplasma DNA based on the 345 bp fragment of the 16SrRNA gene and Babesia/ Theileria DNA based on the 560 bp fragment of the ssrRNA gene. From the 85 tick pools, the DNA of pathogens detected were Rickettsia africae (36.47%), Rickettsia aeschlimannii (16.47%), Ehrlichia canis (2.35%), Babesia occultans (1.18%), Theileria velifera (1.18%) and a symbiont Candidatus Midichloria mitochondrii (8.24%). This study reports the first molecular detection of Candidatus Cryptoplasma californiense (1.18%) in Ghana. Coinfections were recorded in 8.24% of the tick pools. The findings of this study highlight the importance of tick species in Ghana and the need to adopt effective control measures to prevent pathogen spread.


Assuntos
Doenças dos Bovinos , Rhipicephalus , Rickettsia , Theileria , Doenças Transmitidas por Carrapatos , Animais , Bovinos , Gana/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Rickettsia/genética , Rhipicephalus/genética , Theileria/genética , DNA
13.
Pestic Biochem Physiol ; 196: 105634, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945265

RESUMO

Chemical control of tick infestation on dairy farms in India strongly relies upon the use of synthetic pyrethroids (deltamethrin) and organophosphate (coumaphos) drugs. Therefore, the present manuscript aims to investigate the resistance status of Rhipicephalus microplus ticks against these acaricides. Fully engorged adult R. microplus ticks were randomly collected from 8 dairy farms in North India and evaluated for acaricide resistance by using the Larval Packet Test (LPT). Of these, ticks collected from one and three farms showed the emergence of Level I acaricide resistance against deltamethrin and coumaphos, respectively. Significant positive correlations were found in the enzymatic activity (α-esterase, ß-esterase, glutathione-S-transferase, and mono-oxygenase) of R. microplus tick resistant against coumaphos. Native electrophoretogram analysis showed six different types of esterase activity in R. microplus (EST-1b to EST-6b), and EST-5b activity was more predominantly expressed in resistant ticks. Further, inhibitor studies using various esterase inhibitors suggested that EST-5b is a putative acetylcholine-esterase (AchE), and increased expression of one of the AchE might be responsible for the emergence of acaricide resistance. Further, no mutations were detected in the carboxylesterase (G1120A) and domain II S4-5 linker region (C190A) of the sodium channel genes of resistant R. microplus ticks, indicating that increased expression of detoxification enzymes was the probable mechanism for the development of acaricide resistance in the resistant ticks.


Assuntos
Acaricidas , Piretrinas , Rhipicephalus , Animais , Rhipicephalus/genética , Acaricidas/farmacologia , Cumafos , Organofosfatos/farmacologia , Piretrinas/farmacologia , Esterases/genética , Esterases/metabolismo , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo
14.
Infect Genet Evol ; 115: 105511, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37820843

RESUMO

Ticks are vectors of a variety of pathogens that can infect humans and animals. Ticks also harbor non-pathogenic microbiota. This study characterized the microbiota of the ticks infesting beef cattle in Thailand. Two species of ticks; Rhipicephalus microplus (n = 15) and Haemaphysalis bispinosa (n = 5), were collected in seven provinces in northeastern Thailand. Microbial community profile of ticks was examined based on sequences of the V3-V4 region of 16S rRNA gene. Proteobacteria (Pseudomonadota) was the most abundant phylum, followed by Firmicutes (Bacillota), and Actinobacteriota. Coxiella-like endosymbiont was the most abundant bacterial taxon overall (49% of sequence reads), followed by Anaplasma (8.5%), Corynebacterium (5.5%), Ehrlichia (3.9%), and Castellaniella (3.4%). Co-infections of the pathogenic bacteria Ehrlichia and Anaplasma were detected in 19/20 (95%) female ticks. The tick with the lowest number of bacteria had the lowest abundance of the Coxiella-like endosymbiont, and the pathogenic bacteria Anaplasma and Ehrlichia were absent. This study provides baseline information of the microbiota of cattle ticks in northeastern Thailand, suggesting that ticks carry a few dominant bacterial taxa that are primarily non-pathogenic but can co-occur with pathogenic microorganisms. The information obtained is useful for monitoring disease outbreaks in the future and informing prevention and control strategies against cattle tick-borne diseases.


Assuntos
Microbiota , Rhipicephalus , Rickettsia , Doenças Transmitidas por Carrapatos , Animais , Humanos , Feminino , Masculino , RNA Ribossômico 16S/genética , Tailândia/epidemiologia , Bactérias/genética , Rhipicephalus/genética , Ehrlichia/genética , Doenças Transmitidas por Carrapatos/epidemiologia , Anaplasma/genética , Microbiota/genética , Rickettsia/genética
15.
Exp Appl Acarol ; 91(3): 463-475, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37823957

RESUMO

Analysis of the tick microbiome can help understand tick-symbiont interactions and identify undiscovered pathogens, which may aid in implementing control of ticks and tick-borne diseases. The tropical cattle tick Rhipicephalus microplus is a widespread ectoparasite of cattle in the Philippines, negatively affecting animal productivity and health. This study characterized the bacterial community of R. microplus from Luzon, Philippines, through next-generation sequencing of 16s rRNA. DNA was extracted from 45 partially engorged female ticks from nine provinces. The DNA samples were pooled per province and then sequenced and analyzed using an open-source bioinformatics platform. In total, 667 operational taxonomic units (OTUs) were identified. The ticks in all nine provinces were found to have Coxiella, Corynebacterium, Staphylococcus, and Acinetobacter. Basic local alignment search tool (BLAST) analysis revealed the presence of known pathogens of cattle, such as Bartonella, Ehrlichia minasensis, and Dermatophilus congolensis. The tick samples from Laguna, Quezon, and Batangas had the most diverse bacterial species, whereas the tick samples from Ilocos Norte had the lowest diversity. Similarities in the composition of the bacterial community in ticks from provinces near each other were also observed. This is the first study on metagenomic analysis of cattle ticks in the Philippines, providing new insights that may be useful for controlling ticks and tick-borne diseases.


Assuntos
Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Doenças Transmitidas por Carrapatos , Feminino , Animais , Bovinos , Rhipicephalus/genética , Rhipicephalus/microbiologia , RNA Ribossômico 16S/genética , Filipinas , Bactérias/genética , Doenças Transmitidas por Carrapatos/veterinária , Sequenciamento de Nucleotídeos em Larga Escala , DNA , Doenças dos Bovinos/parasitologia , Infestações por Carrapato/veterinária , Infestações por Carrapato/parasitologia
16.
Ticks Tick Borne Dis ; 14(6): 102251, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37708803

RESUMO

Studies on the transcriptional control of gene expression are crucial to understand changes in organism's physiological or cellular conditions. To obtain reliable data on mRNA amounts and the estimation of gene expression levels, it is crucial to normalize the target gene with one or more internal reference gene(s). However, the use of constitutive genes as reference genes is controversial, as their expression patterns are sometimes more complex than previously thought. In various arthropod vectors, including ticks, several constitutive genes have been identified by studying gene expression in different tissues and life stages. The cattle tick Rhipicephalus microplus is a major vector for several pathogens and is widely distributed in tropical and subtropical regions globally. Tick developmental physiology is an essential aspect of research, particularly embryogenesis, where many important developmental events occur, thus the identification of stable reference genes is essential for the interpretation of reliable gene expression data. This study aimed to identify and select R. microplus housekeeping genes and evaluate their stability during embryogenesis. Reference genes used as internal control in molecular assays were selected based on previous studies. These genes were screened by quantitative PCR (qPCR) and tested for gene expression stability during embryogenesis. Results demonstrated that the relative stability of reference genes varied at different time points during the embryogenesis. The GeNorm tool showed that elongation factor 1α (Elf1a) and ribosomal protein L4 (Rpl4) were the most stable genes, while H3 histone family 3A (Hist3A) and ribosomal protein S18 (RpS18) were the least stable. The NormFinder tool showed that Rpl4 was the most stable gene, while the ranking of Elf1a was intermediate in all tested conditions. The BestKeeper tool showed that Rpl4 and cyclophilin A (CycA) were the more and less stable genes, respectively. These data collectively demonstrate that Rpl4, Elf1a, and GAPDH are suitable internal controls for normalizing qPCR during R. microplus embryogenesis. These genes were consistently identified as the most stable in various analysis methods employed in this study. Thus, findings presented in this study offer valuable information for the study of gene expression during embryogenesis in R. microplus.


Assuntos
Rhipicephalus , Animais , Rhipicephalus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vetores Artrópodes , Bioensaio , Desenvolvimento Embrionário/genética
17.
Ticks Tick Borne Dis ; 14(6): 102223, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37422944

RESUMO

The objective of this work was to characterize the Argentine Creole cattle breed through the identification of individual phenotypic variations in the levels of infestation with Rhipicephalus (Boophilus) microplus. We evaluated 179 heifers exposed to successive artificial infestations from 2015 to 2018, achieving a total of 663 observations. Tick counts were assessed with the linear mixed model, considering year of evaluation, time of infestation, dam's age and nutritional status during the evaluated period as fixed effects. The average tick count value obtained allowed to classify the breed as highly resistant to the tick charge (99.3%). Although the previous nutritional condition of the animals did not affect the individual charge response, weight gain during the trial showed a significantly negative correlation. We conclude that the Argentine Creole breed is an attractive genetic alternative for cattle breeding in endemic regions, either as a pure breed or a cross-breed.


Assuntos
Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Bovinos , Animais , Feminino , Rhipicephalus/genética , Infestações por Carrapato/veterinária , Infestações por Carrapato/epidemiologia , Doenças dos Bovinos/epidemiologia
18.
PLoS Negl Trop Dis ; 17(7): e0011273, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498943

RESUMO

Rickettsia microorganisms are causative agents of several neglected emerging infectious diseases in humans transmitted by arthropods including ticks. In this study, ticks were collected from four geographical regions of Uganda and pooled in sizes of 1-179 ticks based on location, tick species, life stage, host, and time of collection. Then, they were tested by real-time PCR for Rickettsia species with primers targeting gltA, 17kDa and ompA genes, followed by Sanger sequencing of the 17kDa and ompA genes. Of the 471 tick pools tested, 116 (24.6%) were positive for Rickettsia spp. by the gltA primers. The prevalence of Rickettsia varied by district with Gulu recording the highest (30.1%) followed by Luwero (28.1%) and Kasese had the lowest (14%). Tick pools from livestock (cattle, goats, sheep, and pigs) had the highest positivity rate, 26.9%, followed by vegetation, 23.1%, and pets (dogs and cats), 19.7%. Of 116 gltA-positive tick pools, 86 pools were positive using 17kDa primers of which 48 purified PCR products were successfully sequenced. The predominant Rickettsia spp. identified was R. africae (n = 15) in four tick species, followed by R. conorii (n = 5) in three tick species (Haemaphysalis elliptica, Rhipicephalus appendiculatus, and Rh. decoloratus). Rickettsia conorii subsp. israelensis was detected in one tick pool. These findings indicate that multiple Rickettsia spp. capable of causing human illness are circulating in the four diverse geographical regions of Uganda including new strains previously known to occur in the Mediterranean region. Physicians should be informed about Rickettsia spp. as potential causes of acute febrile illnesses in these regions. Continued and expanded surveillance is essential to further identify and locate potential hotspots with Rickettsia spp. of concern.


Assuntos
Doenças do Gato , Doenças do Cão , Ixodidae , Rhipicephalus , Rickettsia , Rickettsiose do Grupo da Febre Maculosa , Animais , Bovinos , Humanos , Cães , Ovinos , Gatos , Suínos , Uganda/epidemiologia , Israel , Rickettsia/genética , Ixodidae/microbiologia , Rickettsiose do Grupo da Febre Maculosa/epidemiologia , Rhipicephalus/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Cabras
19.
Fungal Biol ; 127(7-8): 1136-1145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495304

RESUMO

Although Metarhizium anisopliae is one of the most studied fungal biocontrol agents, its infection mechanism is far from being completely understood. Using multidimensional protein identification technology (MudPIT), we evaluated the differential secretome of M. anisopliae E6 induced by the host Rhipicephalus microplus cuticle. The proteomic result showed changes in the expression of 194 proteins after exposure to host cuticle, such as proteins involved in adhesion, penetration, stress and fungal defense. Further, we performed a comparative genomic distribution of differentially expressed proteins of the M. anisopliae secretome against another arthropod pathogen, using the Beauveria bassiana ARSEF2860 protein repertory. Among 47 analyzed protein families, thirty were overexpressed in the M. anisopliae E6 predicted genome compared to B. bassiana. An in vivo toxicity assay using a Galleria mellonella model confirmed that the M. anisopliae E6 secretome was more toxic in cattle tick infections compared to other secretomes, including B. bassiana with cattle ticks and M. anisopliae E6 with the insect Dysdereus peruvianus, which our proteomic results had also suggested. These results help explain molecular aspects associated with host infection specificity due to genetic differences and gene expression control at the protein level in arthropod-pathogenic fungi.


Assuntos
Beauveria , Metarhizium , Rhipicephalus , Animais , Metarhizium/genética , Secretoma , Especificidade de Hospedeiro , Proteômica , Controle Biológico de Vetores/métodos , Rhipicephalus/genética , Rhipicephalus/microbiologia
20.
Exp Parasitol ; 252: 108584, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37468088

RESUMO

Currently, livestock owners manage tick infestations using chemicals, but the method is increasingly losing effectiveness as resistant tick populations have established in the field conditions. Thus, to develop effective tick management strategies, monitoring of resistance in most predominant tick species, Rhipicephalus microplus was targeted. The ticks were collected from eleven districts of Madhya Pradesh and one district of Punjab and tested against deltamethrin (DLM), cypermethrin (CYP), coumaphos (CMP), ivermectin (IVM) and fipronil (FIP), through adult immersion and larval packet tests. The field isolates were highly resistant to DLM [Resistance factor (RF) = 3.98-38.84]. Against CYP, resistance was observed in BWN (Barwani; RF = 2.81) and MND (Mandsaur; RF = 3.23) isolates. Surprisingly, most of the isolates were susceptible to CMP (0.34-1.58). Emerging level of resistance against IVM (1.05-4.98) and FIP (0.40-2.18) was also observed in all the isolates. Significantly elevated production of esterases (p < 0.01) was 90% correlated with RF of DLM while no positive correlation between production of monooxygenase and Glutathione S-transferase with RF to DLM was noted. Multiple sequence analysis of S4-5 linker region of the sodium channel gene of all the isolates revealed a point mutation at 190th position (C190A) which is associated with DLM resistance. Treatment of resistant LDH (Ludhiana) isolate with IVM resulted in upregulation of RmABCC2 gene and insignificant upregulation of RmABCC1 and RmABCB10 genes indicating the probability of linking IVM resistance with over-expression of RmABCC2 gene. The possible tick management strategies are discussed.


Assuntos
Acaricidas , Piretrinas , Rhipicephalus , Animais , Acaricidas/farmacologia , Rhipicephalus/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/farmacologia , Resistência a Inseticidas/genética , Ivermectina/farmacologia , Piretrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...